Introducing BSC Filters

Company and

ronik

BSC / Filters

DOVER COMPANY

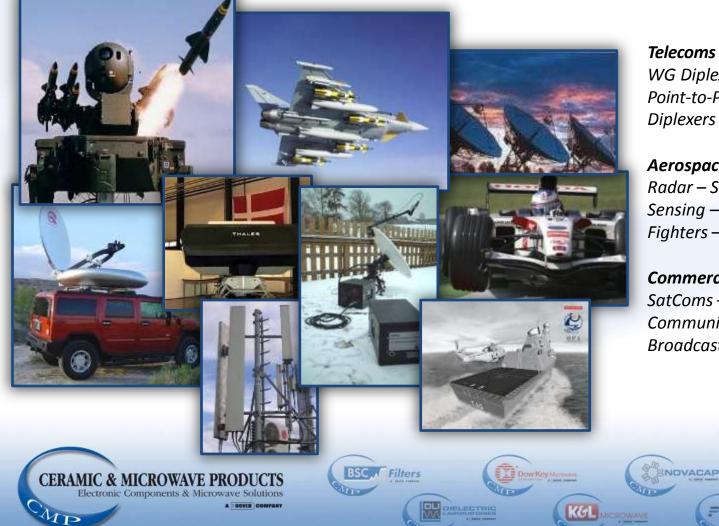
Product Overview

Dover House, York, UK

Located in the heart of the Pennines in Northern England, our fully integrated Design and Manufacturing facilities take the product from inception through design & simulation, manufacture, test, painting and finish.

10-11 Sterling Park Amy Johnson Way Clifton Moor, York YO30 4WU Tel +44 (0) 1904 694250 Email: sales @bscfilters.com

a long her la



Industry Sectors

BSC Filters have more than two decades' experience in RF design and manufacture across all industry sectors, and are specialists in Aerospace & Defence solutions.

Telecoms

WG Diplexers 7 to 38 GHz Backhaul *Point-to-Point – Cavity Filters – Test* **Diplexers**

Aerospace & Defence Radar – SatComs – Radio Coms Sensing – EW – ECM – IED Jammers Fighters – UAV – Missile – Space

Commercial & Industrial SatComs – Telematics – Radio Communications – SNG – Outside Broadcast

SYFER

Voltronics

Our Production Facilities

Our comprehensive manufacturing suite enables the design and production of right-first-time devices, and utilising BSC Exact Technology, we can even create tuning-free solutions above 90 GHz.

Workshop Capability

- 5 x CNC Mills
- 2 x Semi-Automatic Mills
- CMM Inspection
- CNC PCB Mill

Surface Treatment

- Passivation
- Brightening

Solder Assembly

- Fully Automated Reflow
- Auto Solder Dispense
- Irons / Hotplates
- X-Ray

Test, Alignment & Certification

CERAMIC & MICROWAVE PROD

Electronic Components & Microwave Solutions

- Scalar Network Analysers
- Vector Network Analysers
- Dedicated Anti-Static Work Area

A DOVER COMPANY

• Secure Test & Alignment Room

BSC Filter Technologies

Our Engineering Team have far-reaching experience of RF filter technology design, with specialists in Waveguide, Cavity, Lumped Element and Suspended Substrate Stripline technologies. We currently have a catalogue of over 5000 manufactured devices, offering an enormous range of design precedent.

Filter Technologies:

- Waveguide
- Lumped Element
- Suspended Substrate Stripline
- Base Station Cavity
- Combline
- Interdigital
- Tubular
- Ceramic
- Helical

Filter Topologies:

- Bandpass
- Notch
- Lowpass / Highpass
- Diplexers, Multiplexers & Power Splitters/Combiners

Right: Suspended

Substrate

Triplexer.

BSC

- Switched Filter Banks
- Equalizers

CERAMIC & MICROWAVE PRODUCTS Electronic Components & Microwave Solutions

A DOVER COMPANY

Centre: 7-Channel Lumped Element Multiplexer

Filters

DOVER COMPANY

BSC .

MP

Right: Suspended

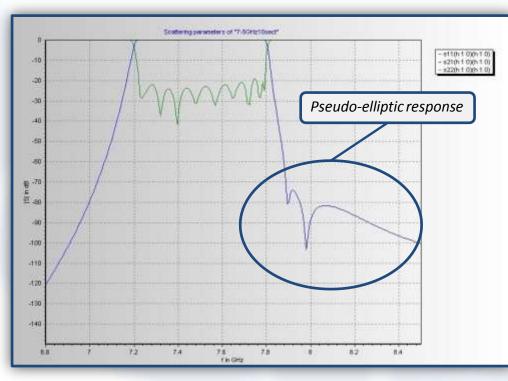
Substrate

Equaliser.

SYFER

Below: BSC-Patented Ultra-Short End Launch Transition (USELT).

Technologies


		Lumped	Suspended	Helical	Combline	Cavity	Ceramic	Tubular	Cavity Notch	Interdigital	Waveguide
Free Cile	Low	DC	DC	0.1	0.2	0.4	0.8	1	1	1	2
Freq GHz	High	3.5	50	1	14	3	4.5	14	12	33	100
Bandwidth	%	200%	181%	3%	60%	5%	20%	100%	5%	110%	30%
Unloaded Qu	Typical	200	500	600	2000	3500	600	600	800	2500	7000
Topology	Bandpass	Yes	Yes	Yes	Yes	Yes	Yes	No	No	Yes	Yes
	Notch / Bandstop	Yes	Yes	Yes	No	No	No	No	Yes	No	Yes
	Diplexer	Yes	Yes	Yes	Yes	Yes	Yes	No	No	Yes	Yes
	Lowpass	Yes	Yes	No	No	No	No	Yes	No	No	Yes
	Highpass	Yes	Yes	No	No	No	No	No	No	No	Yes
	Muliplexer	Yes	Yes	Yes	Yes	Yes	Yes	No	No	Yes	Yes
Size Comparison	1=Small	1	3	5	6	7	2	4	9	8	10
Power	1 to 10 (Best)	4	1	3	6	7	2	9	5	8	10
Cost (1=Low)		5	8	9	4	6	1	7	10	3	2

BSC Filters

A DOVER COMPANY

Pseudo-Elliptic Technology

Above: A performance curve demonstrating Pseudo-Elliptic response. *Below:* An ATC Radar filter with Pseudo-Elliptic cavities.

A DOVIE COMPANY

CERAMIC & MICROWAVE

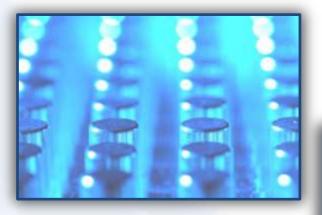
Electronic Components & Microwave Solutions

Filters

Dow Key Meronia

BSC Filters

Our team of specialised RF Design Engineers have a wealth of experience in using Pseudo-Elliptic Technology in waveguide devices.


Using carefully-designed cavities, the Stopband Rejection performance and skirt gradient can be greatly increased, allowing up to 40% lower Insertion Loss in the Passband.

BSC can manufacture high-performance filters in a smaller space envelope when compared with traditional designs. This makes our pioneering Pseudo-Elliptic filters an ideal choice for the Aerospace Industry where weight and size are important.

Filter Examples High Power Lowpass Structures

BSC Filters

BSC Filters' waveguide design experience allows us to push the boundaries of performance in high power RADAR applications.

Our Waveguide Lowpass design precedent extends to applications involving:

• 70 kW+ Power Handling

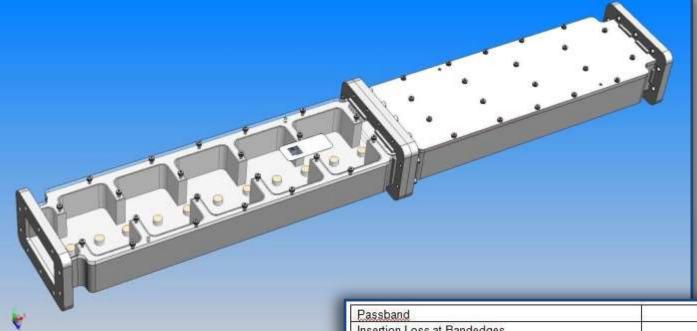
- Insertion Loss as low as 0.06 dB
- Pressurised Systems

Left: A Waffle Iron Lowpass Structure is ideal for high-power handling and low Insertion Loss.

Below: A typical WG10 (WR284) Waffle Iron Lowpass filter specification

Passband:	From 2700 MHz to 2900 MHz (target 3100 MHz
Passband Insertion Loss at Bandedges:	0.2 dB ma
Passband Return Loss:	20 dB mir
Rejection from 5400 MHz to 6200 MHz:	40 dB mir
Rejection from 8100 MHz to 9300 MHz:	30 dB mir
Peak Power:	70kV
Average Power:	1.7kV
Duty Ratio:	2.49
Max Pulse Length:	100µ
Cooling:	Natural, convection and radiatio
Output Match at Fundamental:	1.5:1 ma
Output Match at 2 nd and 3 rd Harmonic:	Unknow
Source Match at Fundamental:	2:1 ma
Source Match at 2 nd and 3 rd Harmonic:	Reflectiv
Altitude:	10000 feet ma
Dimensions:	
Leak Rate at 3psi:	<50cc/m
Operating Pressure:	15psi absolut
Flanges:	Input: CPR284 DES 13 cover with ¼ UNC thro hole Output: CPR284 DES 13 cover with ¼ UNC thro hole
Material:	Aluminiur
Operating Temperature Range:	-40°C to +50°
External Paint Finish:	Matt Blac

E B DowrKey Monority



Filter Examples S-Band

BSC Filters' design precedent and manufacturing expertise includes a wide range of UHF Band filters, from very small surface-mount devices, to large cavity and waveguide structures.

BSC Filters

Left: A Symmetrical-iris inline Waveguide filter operating in the upper UHF band.

This structure and format lends itself well to high selectivity, low loss, and very high power handling.

Radars are a common application, with pulses exceeding many tens of kilowatts in peak power.

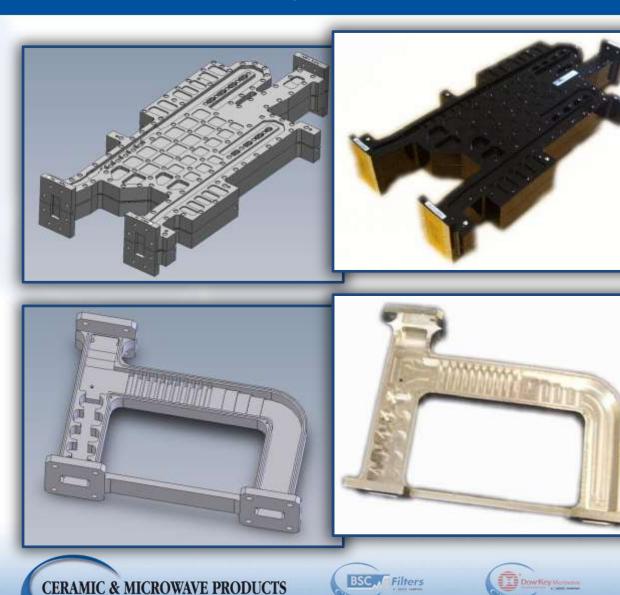
SYFER

Toltronies

Right: A typical Waveguide specification in the upper S-band, demonstrating low insertion loss and high selectivity.

A DOVIE COMPAN

CERAMIC & MICROWAVE P


Electronic Components & Microwave Solutions

Passband	From 2700MHz to 2800MHz
Insertion Loss at Bandedges	0.3 dB max; 0.2dB typical
Passband Return Loss	18dB min
Rejection from DC to 2645MHz	55dB min
Rejection from 2855MHz to 4000MHz	55dB min
Peak Power Handling Capability	3.2 kW min
Length	750mm typical
External Finish	Matt Black

Dow Key Merry

INDVACAP

Filter Examples C- and Ku-Band

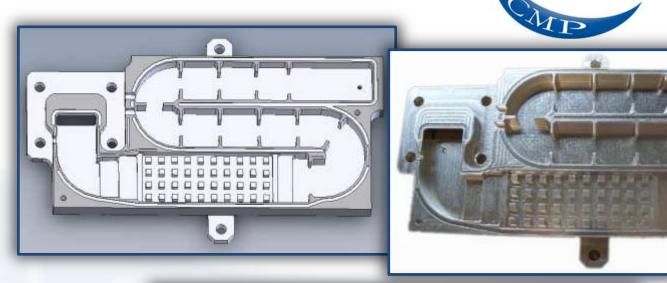
Electronic Components & Microwave Solutions

A DOVIE COMPANY

C-Band: A quad-folded Diplexer in WG15 (WR112), joining Pseudo-Elliptic technology with a high-order filter combination to provide exceptional Stopband performance with near contiguous Passbands.

Ku-Band: A Lowpass/Bandpass Diplexer in WG17 (WR75) with integral flanges and support bracing. A repeatable, dependable format very popular with common Satcom applications.

SYFER


Voltronics

INOVACAP

Filter Examples K- and Ka-Band

K-Band: An airborne communications filter in WG20 (WR42) with Bandpass structure and integrated Waffle Iron Lowpass.

Power handling and wide operating temperature were key features of this design.

BSC Filters

DOVER COMPANY

Voltronics

Ka-Band: A Diplexer in WG22 (WR28). Low loss and small physical size was achieved by using Pseudo-Elliptic technology.

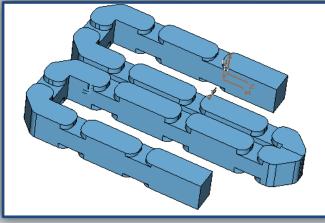

The lower arm incorporates a Lowpass structure to suppress transmitter harmonics.

A DOVER COMPANY

CERAMIC & MICROWAVE PRODUCTS Electronic Components & Microwave Solutions

and a folologia a gill

Filter Examples W-Band


BSC .

Filters

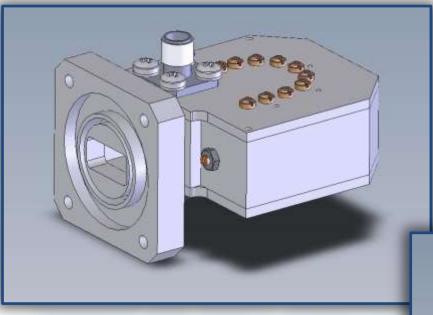
S-Parameter Magnitude in dB 0 -10 -20 -30 -40 -50 -60 -70 -80

Filters

Oltronics

Electronic Components & Microwave Solutions

CERAMIC & MICROWAV

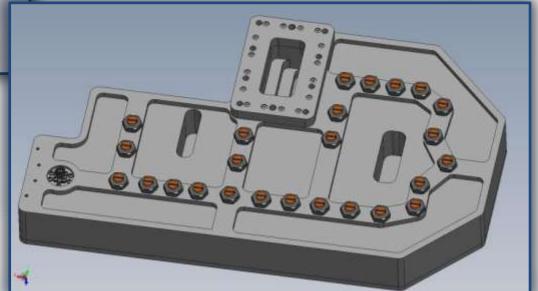

W-Band: An example of BSC Exact Technology; this tuning-free filter operates above 90 GHz. The eleven-section dual-bandpass structure was designed using our own Mode-Matching Software in WG25 (WR15). The waveguide itself is machined to a tolerance of +/- 0.008 mm.

Key design features were a demanding Military operating environment of extreme temperature, shock and acceleration.

NOVACAP

Top left: The completed device, showing matching Rotation Plates. **Top right:** S-Parameter data indicating Insertion Loss and Return Loss. **Bottom left:** Cavity volume model during design phase.

Complex Structure Design


Above: A triple-folded Ku-Band filter in WG19 (WR51) with integrated SMA transition. The space envelope required is less than 50mm x 40mm x 30mm.

BSC can work in synergy with our Customers to find a solution for mechanically challenging systems.

Filters

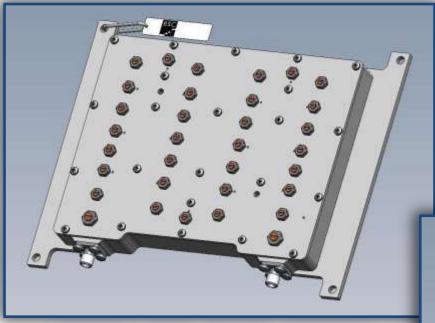
DOVER COMPANY

Our design teams can import 3D CAD models in all industry-standard formats, or work from drawings and even sketches to design high-performance filters to fit into small spaces.

INDVACAP

SYFER

Voltronics


Right: An S-Band filter in WG10 (WR284) with integrated SMA transition. The mechanical layout was designed to fit retrospectively into an existing system.

BSC Filters

Dow Key Mannes

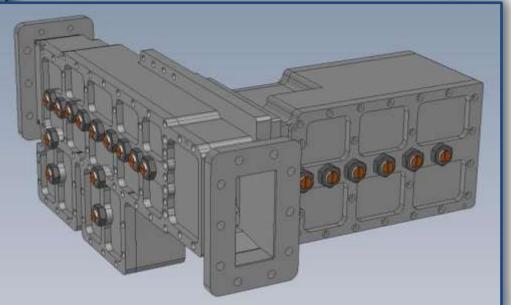
CERAMIC & MICROWAVE PRODUCTS Electronic Components & Microwave Solutions

Complex Structure Design

Above: An X-Band connectorised filter incorporating a triple-folded waveguide with integrated transitions.

Electronic Components & Microwave Solutions

CERAMIC & MICROWAVE


Right: An S-Band filter in WG10 (WR284), folded using multi-plane bends to fit into a waveguide cutout only one-third of the actual filter length. This filter also makes use of Pseudo-Elliptic technology to enhance rejection performance.

BSC Filters

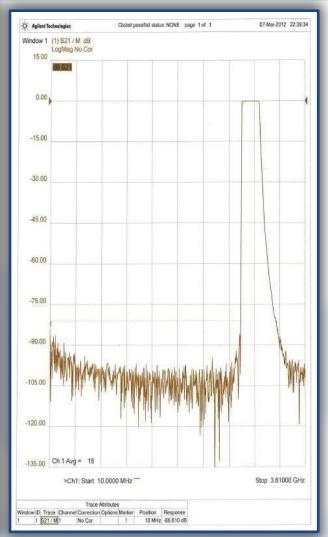
BSC are able to design bespoke solutions to integrate perfectly within system layouts and mechanical constraints.

Many of our designs incorporate multiple folds and combinations of E and H plane bends to allow large-filter performance in a small space envelope.



INDVACAP

SYFER


Toltronies

Filter Examples ATC 4G Reject Filters

CERAMIC & MICROWAVE PRODUCTS Electronic Components & Microwave Solutions

A DOVIE COMPANY

Dow Key Merente

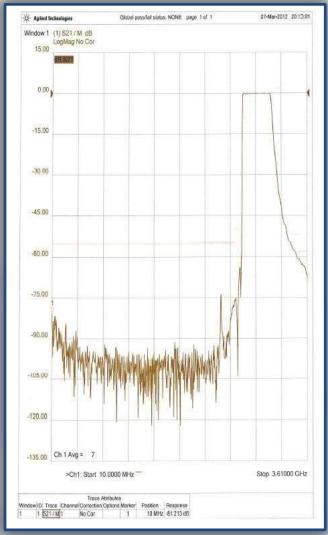
BSC.

Filters

BSC have designed ATC waveguide filters covering the frequency band of 2720MHz to 3055MHz (currently 10 different filter types in this range); these filters are designed to reject the 4G telecommunications band up to 2690MHz, that is currently awaiting auction.

In addition, to help future-proof ATC RADAR systems against other bands that might be reallocated our designs offer rejections up to 4GHz and beyond.

Far Left: A typical passband from a BSCmanufactured S-Band ATC filter. *Immediate Left:* Rejection plot from the same device.


SYFER

Voltronies

INDVACAP

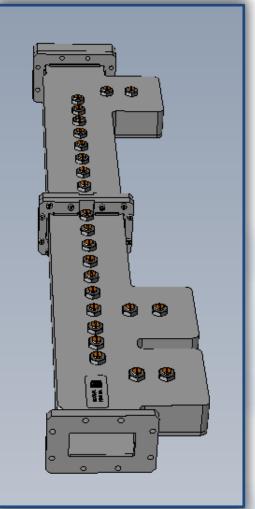
Filter Examples ATC 4G Reject Filters

Current designs are extremely low loss, generally better than 0.2dB insertion loss for the waveguide-to-waveguide designs, offering rejection levels of the 4G band of 50dB to over 80dB depending on application. In addition excellent phase linearity is assured over the operating band by making use of a generalised Chebyshev design which is inherently a low loss design approach. The input and output interface has connections ranging from WG10 flange to SMA or N-type connectors depending upon the application.

A number of the waveguide-flanged filters are designed to handle power levels of 65kW pulse with additional capability of phase-matched pairs.

Far Left: A typical passband from a BSCmanufactured S-Band ATC filter. *Immediate Left:* Rejection plot from the same device.

CERAMIC & MICROWAVE PRODUCTS Electronic Components & Microwave Solutions BSC Filters


DownKory Morroway

FOLE

ATC/4G Inline Filter 6424

CERAMIC & MICROWAVE PRODUCTS Electronic Components & Microwave Solutions

MP

A DOVER COMPANY

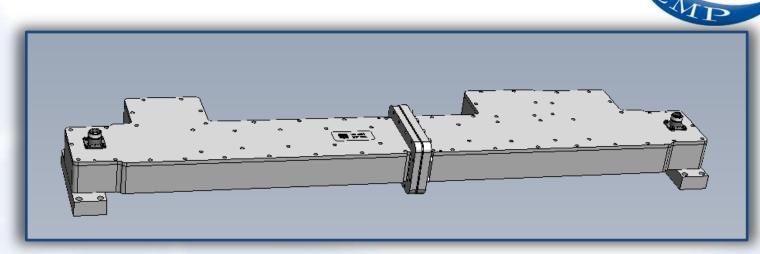
BSC Filters

Specifications:

Dow Key Merentes

KGL

DIELECTRIC

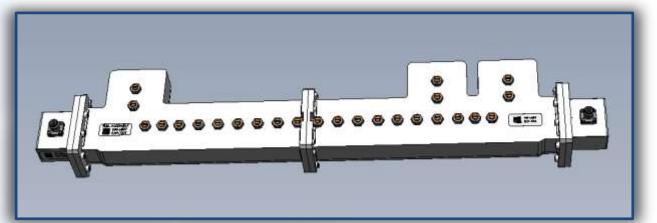

Insertion Loss at 2740 to 2750MHz	0.26dB max
Insertion Loss at 2750 to 2900MHz	0.25dB max
Rejection from DC to 2690MHz	80dB min
Rejection from 3000 MHz to 3100 MHz	25dB min
Rejection from 3100 MHz to 3600 MHz	60dB min
Rejection from 3150 MHz to 3600 MHz	70 dB typical
Group Delay Variation over passband	12ns max
Length	815mm
Operating Temperature Range	0°C to 40°C
External Finish	Gloss Black
Power Handling	35kW max ¹
VSWR	1.25:1 max
Leakage at 50mbar Pressure	< 5 to 10 litres
	per hour

INDVACAP

SYFER

Voltronics

ATC/4G Inline Filter – Coax. 6580


- Passband 2.745 3.055 GHz
- Rejection
 - 2.5–2.675Ghz >55dB
 - 3.4-3.75GHz >60dB
- Passband Loss 0.2dB

Devn from linear Phase 1deg over any 5MHz GD Change - 60nsecs max Return Loss - 17dB min Power Handling 10KW normal 65KW in fault condition, 40usec PW

Filters

ATC/4G WG/Co-ax filter 6599

BSC Filters

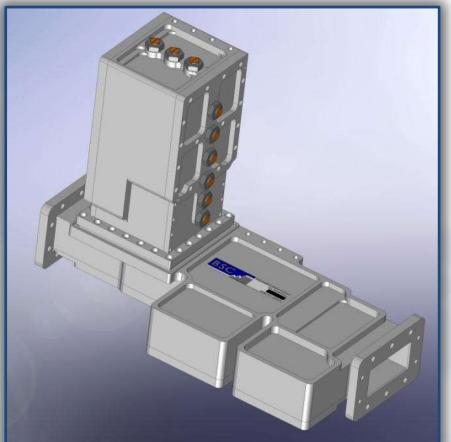
Pass band	2740MHz to 2900MHz
Power Handling	200W CW
Insertion Loss over 2740MHz to 2900MHz	0.38dB max
Rejection from DC to 2690MHz	80dB min
Rejection from 3000 MHz to 3100 MHz	25dB min
Rejection from 3100 MHz to 3600 MHz	60dB min
Length	955mm typical
Leakage at 50mbar pressurised above	<10 litres per hour ¹
ambient (filter only)	
Operating Temperature Range	0°C to 40°C
External Finish	Gloss Black
WU 6599 comprises of 1off WB 6424 and 2off	WT 6514. Painted separately

Dow Key Monantes

181

DELECTE

INDVACAP

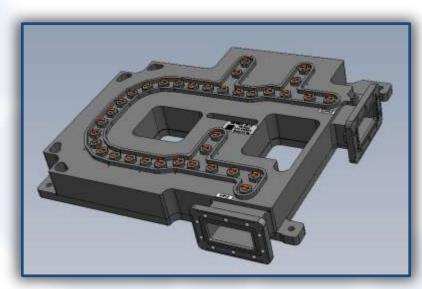

Voltronics

SYFER

BSC Filters

DOVER COMPANY

ATC/4G Inline filter



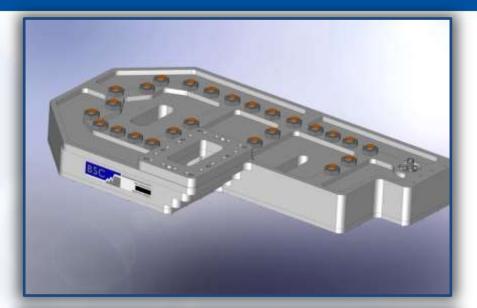
- Passband 2.745 3.055 GHz
- Rejection
 - 2.5-2.675Ghz >50dB
 - 3.4-3.75GHz >60dB
- Passband Loss 0.2dB
- Devn from lin Phase
 - 1deg over any 5MHz
- GD Change 60nsecs max
- Return Loss 17dB min
- Power Handling
 - 10KW normal
 - 65KW in fault condition

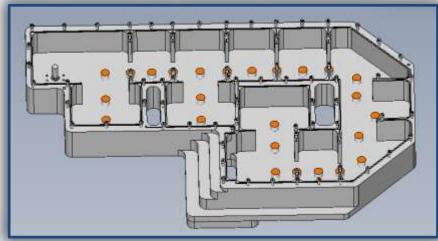
ATC/4G - H-plane 6604

Passband	2.75GHz to 3.1GHz
Passband Insertion Loss	0.2dB (design aim) 0.25dB max
Insertion Loss ripple over any	0.05dB pk-pk max
5MHz band within the passband	
Deviation from linear phase over	10º max
any 5MHz band within the	
passband	
GD across the passband	8ns max
Input / Output portRL	17dB 20dB (design aim)
Amplitude tracking over the	0.1dB max (matched pair)
frequency and temperature range	
Phase tracking over the frequency	10° max (matched pair)
and temperature range	
Rejections	55dB, 1.5 to 2.57GHz
	65dB, 2.57 to 2.69GHz
	60dB, 3.4 to 3.6GHz
	50dB, 3.6 to 3.75 GHz
Pulse power	3KW pk max, 100usec pulse
	(normal operation)
	26KW pk max 100usec pulse
	(fault condition)
Operating Temp	OdegC to +50 degC

BSC Filters

DIELECTRIC





BSC Filters

A DOVER COMPANY

ATC/4G – H-plane Folded 6498

SYFER

Voltronics

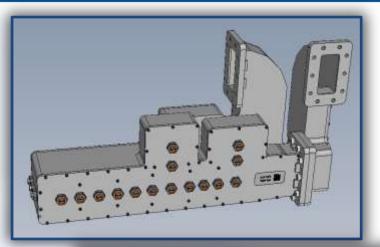
Passband	2720MHz to 3100MHz
Passband Insertion Loss	0.4dB max
(2720MHz to 2730MHz)	
Passband Insertion Loss	0.35dB max
(2730MHz to 3100MHz)	
Passband Return Loss	18dB min
Rejection	60dB min
DC to 2675MHz	
Rejection	55dB min
2600MHz to 2690MHz	
Rejection	45dB min
3400MHz to 3500MHz	
Rejection	50dB min
3500MHz to 3600MHz	
Maximum Power Handling	200W Peak
Output Connector	SMA Male
Operating Temperature	0°C to 70°C
Range	
External Finish	Matt Black

INDVACAP

Dow Key Marana

KGL

DIELECTRIC

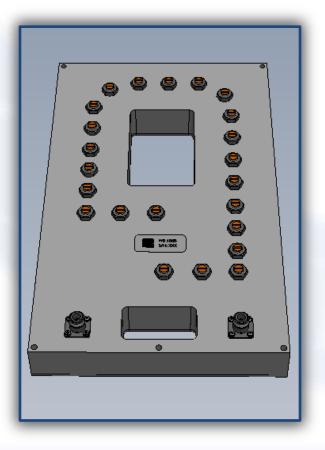

BSC Filters

CERAMIC & MICROWAVE PRODUCTS Electronic Components & Microwave Solutions

MP

A DOVER COMPANY

ATC/4G – E-Plane 6506


Passband	2750MHz to
	3051.3MHz
Insertion Loss at	0.25dBmax
Bandedges	
Passband Return Loss	18dB min
Rejection from DC to	55dB min
2600MHz	46
Rejection from 2600MHz	50dB min
to 2690MHz	
Rejection from 3400MHz	52dB min
to 3500MHz	
Rejection from 3500MHz	58dB min
to 3600MHz	
Maximum Power Handling	10kW Peak
(into short cct)	
Flanges	UDR 32
Operating Temperature	0°C to 50°C
Range	
External Finish	Matt Black

CERAMIC & MICROWAVE PRODUCTS Electronic Components & Microwave Solutions DownKey Mersons

ATC/4G – Receive filter 6558

Passband	From 2750MHz to
	2900MHz
Insertion Loss at Bandedges	0.4dB max
Passband Flatness	0.4dB max
VSWR	1.3:1 max
Rejection from DC to 2700MHz	60dB min
Rejection from 3100MHz to	60dB min
3600MHz	
Maximum Power Handling	300W Peak
Maximum Power Handling	20W CW
Group Delay Variation over	20ns max
passband	
Group Delay Variation over	15ns typical
passband	
Connectors	N-Type Female
	N-Type Male
Operating Temperature Range	10°C to 40°C
External Finish	Matt Black
Group Delay Variation at	0.23ns/MHz max
2760MHz	
Group Delay Variation at	0.23ns/MHz max
2885MHz	

BSC ... Filters

A DOVER COMPANY

Contact Details

BSC Filters Limited

10-11 Stirling Park Clifton Moor, York YO30 4WU ENGLAND

tel:	+ 44 (0) 1904 694250
fax:	+ 44 (0) 1904 694260
email:	sales@bscfilters.com

RUPPtronik Bernd Rupp Breslauer Str. 14 D-83052 Bruckmuehl GERMANY

T: +49 8062 80 96 96-0 M: +49 151 100 689 45 F: +49 8062 80 96 96-9 E: info@RUPPtronik.de

W: www.RUPPtronik.de

Bernd.Rupp@RUPPtronik.de