

BSC Today

- Design & Manufacture in York UK
- 85 Employees
 - 12 Design Engineers
 - 3 Mechanical Engineers
 - 3 Projects / Planning
- ISO 9001:2015
- ISO 14001:2015
- SC21 Signatory
- JOSCAR Accredited
- UK/NATO secure site status
- 14,000 sq ft facility

BSC Today

Cleanroom

Laser Weld

Vibration Test

- Extended Class 10,000 clean room
 - Integration / Modules
 - Space products
 - Plasma Cleaner
 - Deep access wire bonding
 - Bond pull test
- 4 Port Network Analyser
- Laser Weld
- Vacuum oven, backfill, Fine Leak
 CNC Milling Machine

Mixed Technology Modules

Recent Investments

Extended Cleanroom

Fine Leak Tester

4-Port Analyser

Deep access wire bonding

Additional CNC Milling Machine

Laser Weld

BSC Core Filter Technology Range

The chart on the right illustrates most of our core filter technologies and their frequency ranges.

We build around these filters technologies to include:

- Switching
- Amplifiers (Small signal & power)
- Couplers
- Dividers & Combiners
- Frequency Dividers
- Synthesisers
- Limiters
- Gain Control & Power Monitoring
- Built-in Test
- TTL, Serial/Parallel, Ethernet Control & Telemetry
- Power Supply & Conditioning
- FPGA & Microcontroller

BSC Technology Road Map

Lumped Element Filter Applications

Defence
Ground / Sea / Radar
/ Communications /
Sensing / EW/
Jammers

Aerospace
Fighters / Radar /
UAV / Missiles /
Space / Civil
Communications/

Commercial
Telecoms / Radio
Communications /
Test Equipment

Anti IED protection

High Power (50/100W) C-IED filters Provides a protective Bubble around a vehicle to prevent roadside bombs being detonated by radio

>600 Systems sold so far

Customers are looking to expand capabilities by adding Notch filters to their Jammer system to open up comms whilst protecting

Cavity Filter Applications

Defence Ground / Sea / Radar / Communications / Sensing / Jammers

Aerospace Fighters / Radar / UAV / Missiles / Space / Civil Communications/

Commercial Telecoms Test/ Telematics / Radio Communications

Aircraft Ku Band SATCOM

Suspended Substrate Technology

Applications

- EW
- ECM
- RADAR

Structures

- Bandpass
- Bandstop
- Diplexers
- Multiplexer
- Lowpass
- Highpass

Scope

- •Frequency Range: 500 MHz to 50 GHz
- •Very Wide Bandwidth 10% upwards (multi-octaves)
- Very long Stopbands
- Complex Multiplexing
- Rugged Construction for harsh environments
- Good Repeatability
- Excellent for sub system integration

Helicopter ESM

- ▶ EH101 Anti-submarine, troop transport
- NH90 Utility Military helicopter

SH8198 & SH8252

Fitted to Broadband ESM on both platforms

Suspended Substrate Multiplexers

3 way to 7 way +
Cascade of lowpass-highpass diplexers
Some standard bands (2-4, 4-8, 8-12, 12-18GHz)
Mixed technologies (e.g. Lumped element & SSS)

2-40 GHz Suspended Substrate HPF

Multi-Octave bandwidth, also 1GHz to 18GHz available

Equaliser 8 to 18 GHz

- ▶ SE4308
- 8 to 18 GHz Linear Equaliser
- Insertion Loss
 - 1 dB + /- 0.25 dB @ 18 GHz
 - 4dB + /- 0.25 dB @ 8 GHz
- ► Linearity +/- 0.25 dB max
- 9mm diameter body
- SMA connectors
- Other frequency ranges available

Equaliser 0.5 to 18 GHz

Frequency Range	From 0.5GHz to 18 GHz
Insertion Loss at 18 GHz :	2.0 dB max
Differential Insertion Loss at 0.5 GHz:	14.5 +/-0.75 dB max
Passband VSWR (0.5 to 18 GHz)	2:1 max
Linearity (0.5 to 18 GHz)	+/- 0.5dB(best straight line fit)
Maximum Power Handling	10 W CW
Dimensions:	45 x 18 x 13mm*
Connectors:	SMA Female
Operating Temp:	-40 to + 85 degrees C
External Finish: Paint	Matt Black

Complex Waveguide Design

BSC work with our Customers to find a solution for mechanically challenging systems.

BSC design high-performance filters to fit into available space.

A triple-folded Ku-Band filter in WG19 (WR51) with integrated SMA transition. The space envelope 50mm x 40mm x 30mm. (2" x 1.6" x 1.2")

S Band ATC/4G Mitigation

Passband	2750MH
	zto
	3051.3
	MHz
Insertion Loss at	0.25dBmax
Bandedges	
Passband Return Loss	18dBmin
Rejection from DC to	55dBmin
2600MHz	
Rejection from 2600MHz	50dBmin
to 2690MHz	
Rejection from 3400MHz	52dBmin
to 3500MHz	
Rejection from 3500MHz	58dB min
to 3600MHz	
Maximum Power Handling	10kW Peak
(into short cct)	
Flanges	UDR 32
Operating Temperature	0°C to 50°C
Range	
External Finish	Matt Black

NANo – PIN to WG Transition

Interchangeable with field replaceable connector

In Waveguide sizes
 WG8 – WG22

•Mate to pin Diameters:- .012, .015, .018, .020 inch

Applications

- · LNA, Receiver, Radio
- 1GHz to 40GHz

Transceiver Tx / Rx Assembly

Waveguide Multiplexers

- 6.5GHz to 7.5 Quadraplexer
- Commercial Rotary wing platform
- Provides simultaneous up and downlinks
 - 40MHz channel BW
 - 120dBc isolation
 - 10 W CW power handling
 - Sealed
- N-Type connectors

BSC QEST Filter Design software

- User can design Filters
 - Band Pass
 - Low Pass
 - High Pass
- Current Technology
 - Combline
 - Interdigital
 - Lumped Element
 - Thin Film
 - Mixed technology
- Export S2P files

• Can generate an enquiry for the filter for BSC to quote quickly

QEST - BSC Sales Filter Design software.

Currently exists On David, Paul and Peter's Laptops for use live with customers. Specification, Outline drawing, plots and S2P data all available immediately.

Space Heritage - Program History & Recent Additions

GEO Platform (Launch. ~2021)
 [Full S-Level Program]

NGSAR (2016)

CyGNSS (2013)

NovaSAR (2013)

• RapidEye (2008)

• GIOVE-A (2005)

• TopSat (2005)

Mars Express (2003)

NovaSAR-S (2013)

RUPP tronik (

Space Heritage - NovaSAR

- NovaSAR: SD 6701/SB 6698/LB 6699/LL 6700 key features:
- Small size, Suspended Substrate & Lumped Element Filters
- Specialist fixtures incorporated into design (over-engineered hex bolts and enclosure)
- Space-approved epoxy and RTV compound (low outgassing)
- Micro-ventilation ducts allowing vent but not at expense of RF leakage (>1:10 diameter to depth ratio)
- 'C-loop' SMA-to-PCB wire link for strain relief

Space Heritage – CyGNSS

- **CBU 6811 (14656), key features**:
- Machined Combline Construction
- Very low loss (surface GPS reflectometry)
- Mechanical design standards approved by NASA
- Incorporated customer PCB with LNAs & switching

Specification	Parameter
Passband From	1565MHz to 1615MHz
Insertion Loss at Centre	0.35dB max
Frequency	
Passband Return Loss	14dB min
Rejection at 1500MHz	12dB typical
Rejection at 1670MHz	12dB typical
Rejection at 3200MHz	60dB min
Rejection at 6400MHz	40dB typical
Maximum Power Handling	10W CW
To Outline Drawing	Per customer files
Input Connector	SMA Female
Output Connector	0.020" RF Pin
- mated to supplied board and	
supplied test connector	
External Finish	Silver Plate (Unpainted)

Geostationary S-Level Program

Ka-Band (~30GHz):

- Temperature stable
- Silver plated finish
- Base material Invar nilo 36
- Flight Models (FM)
- Breadboard Prototypes (BB)
- Engineering Models (EM)
- Engineering Qualification Models (EQM)

- Temperature compensated
- Silver plated finish
- Base material Aluminium and copper
- Integral lowpass filter (Brass silver plated).
- Flight Models (FM)
- Breadboard Prototypes (BB)
- Engineering Models (EM)
- Engineering Qualification Models (EQM)

New Space Activity

Suspended Substrate Puck

ESA funding program lodged Internal work package already under way

Test Piece - Dielectric resonator 26.5GHz 5th
Degree

BSC Technology Road Map

Adaptive Filtering - Switched Filter banks

- BSC now offer full in house designed SFBs with mixed signal PCBs, flexi interconnected solutions
 - Few MHz to 18GHz
 - Pin diode, FET switched

Adaptive Filtering - SDR Front-End

Designed for a high-spec Radio system, BSC have developed a fully-integrated 14-channel IF preselector module featuring:

- 500 MHz to 3 GHz operation
- 64 dB Gain Control
- Adjustable front-end Dynamic Range
- LNA or bypass states

Adaptive Filtering - Tuneable Filters

- •BSC are developing unique tuneable technologies;
- •Microwave Filter Base complete and power tested at 50W power handling on full prototype;
- •HV Switch Driver
- •FPGA Firmware
- Alignment and Test Software
- •Calibration and Look-Up Table Programming Software.

Specification

• Frequency Range: 225 to 400 MHz 3dB Bandwidth: 2.5% of Fo min

 Passband Insertion Loss: 4 dB max

Max RF Power:

Passband VSWR: 2:1 max

 Rejection Characteristics: 30 dB at 10% of Fo In-Band IIP3: +50 dBm min

• Step Size: 88 steps @ 2 MHz Control: 7/8 Bit Parallel

Supply: +5V, <2A

50W 125 x 100 x 50 mm •Size:

Adaptive Filtering - Tuneable Filters

- also tested at full 50W with hot switching (good VSWR on load).

Adaptive Filtering - Reconfigurable Filter Bank

What is it?

In a Reconfigurable Filter Bank any number of the channels are simultaneously selectable.

Application

- Front end filtering of large interferers on broad band receiver systems
- EW threats typically very wide band some radar signatures require 500MHz+ analysis BW and continue to increase....

This example is an 8 channel generic design spaced in equal 2GHz bandwidths from 2 to 18GHz.

Adaptive Filtering — Reconfigurable Filter Bank

4th generation European fighter aircraft

2-18GHz, 8 channel RFB Fitted to ESM suite Removes interferers on a pulse-by-pulse basis

Hundreds on order, more to come....

Adaptive Filtering - Reconfigurable Filter Bank

See <u>www.bscfilters.com</u> for <u>datasheet</u>

ISM Subsystem — Finished Item (6-Channel Version)

ISM Subsystem - Filtered PA Module Construction

ISM Subsystem - Specification

Channel Modules

Parameter	Channel #1 Module	Channel #2 Module	Channel #3 Module	Channel #4 Module		
Frequency Range	433 – 437MHz	863 - 870 MHz	2400 - 2500MHz	5725 - 5875MHz		
Return Loss	10dB min	10dB min	10dB min	10dB min		
Small Signal Gain	40dB	40dB	40dB	40dB		
Gain Variation	+/-2dB max Target +/-1dB	+/-2dB max Target +/-1dB	+/-2dB max Target +/-1dB	+/-2dB max Target +/-1dB		
Output P1 dB @ full gain	34dBm nom	34dBm nom	36dBm nom	36dBm nom		
Total out-of-band suppression:						
Lower 45dB Rejection	DC-423MHz	DC-850MHz	DC-2350 MHz	DC-5670MHz		
Upper 45dB Rejection	447 - 6000MHz	885 - 6000MHz	2550 - 6000MHz	5930 - 6000MHz		
Saturated Output power	37dBm min	37dBm min	37dBm min	37dBm min		
	(38dBm nom)	(38dBm nom)	(39dBm nom)	(39dBm nom)		
O/P noise power suppression:						
Lower 20dB Rejection	DC-413MHz	DC-800MHz	DC - 2000MHz	DC- 5615MHz		
Lower 10dB Rejection	413-423 MHz	800 - 850MHz	2000 - 2350MHz	5615 - 5670MHz		
Upper 10dB Rejection	447-455 MHz	885 – 940 MHz	2550 - 3000MHz	5930-5970MHz		
Upper 20dB Rejection	455 - 6000MHz	940 - 6000MHz	3000 - 6000MHz	5970-6000MHz		
Supply	+28V@1A max	+28V@1A max	+12V @6A	+12V @6A		
	-12V @ 0.075mA	-12V @ 0.075mA	-12V @0.075mA	-12V @0.075mA		
Gain Control	30dB / 1dB steps	30dB / 1dB steps	30dB / 1dB steps	30dB / 1dB steps		
Module Size (TBC)	140 x 70 x 80mm	140 x 70 x 80mm	140 x 70 x 40mm	140 x 70 x 40mm		

Integrated Assemblies - SDLVA

Programmable Successive Detection Log Video Amplifier (SDLVA). Used in a Fast Jet ESM platform, the SDLVA offers:

- Integrated filtering and gain equalisation
- Full temperature compensation
- Electronically adjustable dynamic range and offset
- Device shown operates in X-Band

4th generation European fighter...

Thin Film Broadband Module

- Broadband, 2 18 GHz Miniature Switched Filter Bank
- 8 Channels
- Built-in test function with oscillator
- Features new quasi-distributed Thin Film designs
- 100 x 40 x 15 mm
- < 100 ns switching speed
- <u>Excellent example of Thin Film integration and mixed</u> technology.

Shipborne ESM / EW

Next Generation frigates.

Preselector & Switched notches fitted behind antennas on the mast IF switched filters on DRFM (Jammer) front end

Recent Development - RF Distribution Unit

- Two identical RF channels
 - 2–6GHz inputs
 - 12dB gain
 - Coupled outputs
- Single 4GHz channel Input
 - 2 amplified identical outputs
 - Two Freq divide by 4 identical outputs
- Threshold detection on all outputs

Future large aircraft (Transport)

Miniaturisation & Packaging (part of the R&D Roadmap)

Current Design Study — QFN-Packaged Tuneables

BSC are in the early stages of developing QFN -packaged tuneable Filters:-

- Currently undergoing virtual prototyping:
 - L-Band (1 2 GHz)
 - S-Band (2.4 3.5 GHz)
 - X-Band (7 12 GHz)
 - X-Band Notch (7 12 GHz)
 - ACTIVE x-band tuneable
- Current models exceeding market precedent - higher Q

Current approaches are expected to utilise 12 mm x 12 mm Plastic QFN package

QFN Tuneables - Early Results X Band

Predicted Performance - Single X band - NOTCH

X Band NOTCH QFN

ACTIVE tuneable QFN

Utilising a unique REGENERATIVE active filter to recover passband energy in a superposition technique.

Measured Performance

Thin Film Technology

6 Channel X Band Prototype

4 Channel Concept

High Density uW MODULES

- Meet Customer demand for SMT Thin Film SFBs
 - Stay away from just ceramic tiles, but keep the size

High Density uW MODULES

High Density uW MODULES

Preselectors - Solid State YiG replacement

Generate a 2-18GHz Solidstate high performance Tuneable Filter to act as a YiG replacement.

- High degree filters (6 to 8 section
- Wide bandwidths –
 1GHz
- Each filter will tune over a small section of the band, with a large number of filters required to switch between.
- 3U Card for single, or ideally dual module.

BSC | DOW-KEY MICROWAVE | K&L MICROWAVE | POLE/ZERO | BSC Proprietary Information

Tunable Highpass

Product Overview

- The graph (right) shows the potential frequency range covered by a resonator only tuned highpass design.
- The limiting factor with only one mode of tuning is return loss.
- Suitable for higher frequency HP designs.

BSC | DOW-KEY MICROWAVE | K&L MICRO

BSC Proprietary Information

Tunable Lowpass

Product Overview

- The range of the lowpass is greater with single mode tuning and the centre frequency of the tuning range can be adjusted with correct component value selection.
- This frequency range shift can be seen on the lower graph.
- Again, the limiting factor is return loss.

Combined Bandpass

Product Overview

- Combining the two filters we get either:
 - a frequency tuneable narrowband bandpass or
 - a bandwidth tuneable bandpass or
 - A combination of tuneable centre frequency and bandwidth.
- As a bandwidth tuneable bandpass the filter demonstrates a tuning range of 300%.
- Return Loss can be optimised further depending on customer requirement.

Infinitely variable, generic 2-18GHz filter

Preselector where and centre frequency and any bandwidth can be selected that falls within 2-18GHz Band

- Bank of tuneable low-pass filters
- Bank of tuneable high-pass filters
- 3U module form factor
- Utilise broadband SSS LP/HP technology modified structures.

Value Add Subsystems Narrowband EW receiver Broadband, multipulse reciever

Target Specifications.... IN A 3U SINGLE SLOT

DCV-5800 RF MODULE SPECIFICATIONS

2.5:1 maximum,

input impedance 50 ohms (1994 damage) (-80 dBm (0.5 - 18 GHz)

15 dB maximum at center tune frequency and 13 dB typical

(NF increases 1.0 dB/25°C)

Wideh II output

Input VSWR

Maximum input

radiation

Noise figure (at 25°C)

 Center frequency
 1.0 GHz

 Bandwidth 3 dB
 ±250 MHz

 RF to IF gain
 +8.5 dB ±2.5 dB

Instaneous linear 95 dB typical (1.0 MHz ruf 947).

dynamic range 91 de minimum

Output VSWR <2.0:1

Group delay variation <3 nsec typical across 80%

3 dB BW

Narrowband IF output

 Center frequency
 160 MHz

 Bandwidth 3 dB
 ±35 MHz

 RF insertion gain.
 +11.0 dB ±3.0 dB

 Instantaneous linear
 90 dB (1 MHz BW)

dynamic range

Output VSWR <2.0:1

Group delay variation <4 nsec typical across 80%

3 dB BW

LO. input VSWR 2.5:1 maximum, input impedance

50 ohms

RF attenuation. None

Image rejection 70 dB minimum IF rejection 70 dB minimum

Internally generated -90 dBm equivalent input, typically

spurious -80 dBm maximum RF/IF gain flatness ±1 dB (80% bandwidth) Log video output

Detected 160 MHz output Detected RF bandwidth Video detection bandwidth

Dynamic range Output impedance

Slow tuning time

Fast tuning time

0.2 to +2.0 VDC typically 15 MHz centered at 160 MHz 7.5 MHz, 1/2 IF bandwidth 80 dB typically, 60 dB minimum

SYN-5800 SYNTHESIZER MODULE

1st LO. sample output Front panel (5MA female)

1st LO. sample -15 dBm +3 dB output level

1st L.O. tuning resolution 100 kHz (other lower step

sizes available) c20 msec typically 1.0 GHz step

100 MHz step

50/100 ohms

Slow tuning time <5 msec typically

100 MHz step <300 µsec typically

1 GHz step
Fast tuning time <200 µsec typically

Total impressed c0.85 degrees rms (slow integrated phase noise tune mode) typical, 1.0 degrees rms maximum

Total impressed c10 degrees rms (fast

Total impressed <10 degrees rms (fast integrated phase poice type mode) maximum

Transpressed Profile at 18 GHz in all local composite phase noise oscillators sources (typical)

 Frequency offset
 Phase noise density

 100 Hz
 -65 dBc/Hz

 1 kHz
 -86 dBc/Hz

 10 kHz
 -88 dBc/Hz

 100 kHz
 -98 dBc/Hz

 1 MHz
 -115 dBc/Hz

 MHz
 -128 dBc/Hz

SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

Rockwell – RC5800

Compact EW Rx - Low TRL

PLL/	DDS	NLTL	Fout					
low	high	νN	Low	High				
1.8333	2.4444	3	5,4999	7.3332				
1.8333	2.2916	4	7.3332	9.1665				
1.8333	2.2	5	9.1665	11				

		7							_				
			7	-19:00		Frequency Shifts Stro: *		Timper Units	Mayrenc 25:00				
			Device Parameters (g Output) Component Gain Mr P2 P1 Plant Mr										
			Component	Gain		120	4	Pjadj	NEW	Return L	DON (ATT)		
7	0 0.0 (10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	٠,	Designation Cresults/DCS	-10.00	10.00	100.00	100 00	100.00	1000.00	50.00	BO DO		
31	the section of the last test test to the section of	u i	gán	17.00	3.50	100.00	27.00	15.00	1000.00	50.00	50.00		
			1 switch	-3.00	3.00	100.000	100.00	190.00	1000:00	50.00	50.00		
			t mint	-10.00	10.00	100.00	20.00	-19.50	1000.00	50.00	50.00		
		18	gan	15:00	3.50	100.005	27.00	15.00	1000.00	50.00	80.00		
	The second secon		1st FF stage gain control	-4.00	4.00	100.006	100.00	100:00	5000.00	50.00	50.00		
-		H	totif Filter	-4,00	4.00	100 00	100.00	100.00	1000.00	50.00			
'n		- 1	gán	12.00	3.50	100.00	33.00	20.00	1000.00	50.00	50.50		
-/	Se ID has the ID will be ID to the line of the In t	1	trai Miver (-5dlim input)	-10.00	10.00	100.00	25.00	-15.00	1500:00	50.00	50.00		
Á,		. 1	5 F amp	12.00	4.50	100.00	33.00	20.00	1000.00	50.00	60.00		
ŕ	The III he is the transfer of	- 13	1 IF OF rages	-7 00	7.00	100.000	100.00	100 00	1000.00	10.00	80.00		
	Control (Married)	3	2 IF anp	12:00	4.50	100.00	33.00	20.00	1000.00	50.00	50.00		

microwave Products

Group

BSC I

DDS/PLL – prototype

Phase Noise DDS/PLL;

(N=5)**Target** Measured 1kHz -105dBc/Hz -106.7dBc/Hz 10kHz -110dBc/Hz -114.6dBc/Hz 100kHz -115dBc/Hz -118.5dBc/Hz 1MHz -115dBc/Hz -126.3dBc/Hz **10MHz** -135dBc/Hz -142dBc/Hz

Delta

RMS Noise

Residual FM

Carrier Power 1.86 dBm Atten 8.80 dB Mkr1 1.88080 kHz
Ref -40.80dBc/Hz
10.80 dBc/Hz
10.80 dBc/Hz
10.80 dBc/Hz
10.80 dBc/Hz
10.81 dBc/Hz
Residu

Residu

Residu

Residu

Residu

Residu

Residu

Residu

Agreet Trace Type X Axis Value

10.81 dBc/Hz

10.81 dBc/Hz

10.81 dBc/Hz

Residu

Residu

Residu

Residu

Trace Type X Axis Value

10.81 dBc/Hz

10.81 dBc/Hz

Residu

Residu

Residu

Residu

Residu

Trace Type X Axis Value

10.81 dBc/Hz

Residu

Residu

Residu

Residu

Residu

Frequency Reference Unlock

Agreet 120.12 dBc/Hz

Residu

Marker 1.00000 MHz

2.5GHz Ref – 1.8GHz

Phase Noise

2.5GHz Ref – 2.4GHz

Phase Noise

Stand-alone Synth - 2.75-22GHz

Compact EW Rx Datasheet

Thank you – Contact Details

BSC Filters Limited

10-11 Stirling Park Clifton Moor, York YO30 4WU ENGLAND

david.weeks@bscfilters.com

peter.hardcastle@bscfilters.com

sales@bscfilters.com

A RUPP tronik Beratung und Vertrieb • HF- und Mikrowellentechnik

RUPPtronik Bernd Rupp Breslauer Str. 14 D-83052 Bruckmuehl GERMANY

T: +49 8062 80 96 96-0 M: +49 151 100 689 45 F: +49 8062 80 96 96-9 E: <u>info@RUPPtronik.de</u> W: <u>www.RUPPtronik.de</u>

Bernd.Rupp@RUPPtronik.de